Protective effects of agmatine on lipopolysaccharide-injured microglia and inducible nitric oxide synthase activity.
نویسندگان
چکیده
AIMS Proinflammatory factors released from activated microglia contribute to maintaining homeostasis against various noxious stimuli in the central nervous system. If excessive, however, they may initiate a pathologic neuroinflammatory process. In this investigation, we evaluated whether agmatine, a primary polyamine known to protect neurons, reduces lipopolysaccharide (LPS)-induced damage to microglia in vitro and in vivo. MAIN METHODS For in vitro study, BV2-immortalized murine microglia were exposed to LPS with agmatine treatment. After 24hours, cell viability and the amount of nitrite generated were determined. For in vivo study, LPS was microinjected into the corpus callosum of adult male albino mice. Agmatine was intraperitoneally administered at the time of injury. Brains were evaluated 24hours after LPS microinjection to check for immunoreactivity with a microglial marker of ionized calcium binding adaptor molecule 1 (Iba1) and inducible nitric oxide synthase (iNOS). Using western blot analysis, protein expression of iNOS as well as that of the proinflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-1β, was determined. KEY FINDINGS Agmatine significantly reduced the LPS-induced BV2 microglial cytotoxicity from over 80% to less than 60% (p<0.001), as determined by lactate dehydrogenase assay. It suppressed the nitrite production from 16.4±3.14μM to 5.5±1.27μM (p<0.001), as measured using the Griess reaction. Agmatine also decreased the activities of microglia and iNOS induced by LPS microinjection into corpus callosum. SIGNIFICANCE Our findings reveal that agmatine attenuates LPS-induced microglial damage and suggest that agmatine may serve as a novel therapeutic strategy for neuroinflammatory diseases.
منابع مشابه
Modulation of Lipopolysaccharide Stimulated Nuclear Factor kappa B Mediated iNOS/NO Production by Bromelain in Rat Primary Microglial Cells
Background: Microglial cells act as the sentinel of the central nervous system .They are involved in neuroprotection but are highly implicated in neurodegeneration of the aging brain. When over-activated, microglia release pro-inflammatory factors, such as nitric oxide (NO) and cytokines, which are critical in eliciting neuroinflammatory responses associated with neurodegenerative diseases. Thi...
متن کاملAGE proteins as a causative factor in Alzheimer's Disease
The reaction between reducing sugars and protein free amines, known as the Maillar reaction results in the formation of advanced glycation endproducts (AGEs). AGE modification changes the structure of proteins to amyloid cross-beta structure. These protein structures can activate receptors known as RAGE on glial cells (microglia and astrocytes), and induce the expression of inducible nitric oxi...
متن کاملComparison of inducible nitric oxide synthase activity in pancreatic islets of young and aged rats
Objective(s):Some pathologic situations such as diabetes and metabolic syndrome are associated with alternation in nitric oxide level. Incidence of these condition increases with aging. On the other hand, insulin secretion is modulated by nitric oxide, and nitric oxide synthase (NOS) activity is also altered in diabetes. In this study, modification in the enzyme activity associated with aging a...
متن کاملAGE proteins as a causative factor in Alzheimer's Disease
The reaction between reducing sugars and protein free amines, known as the Maillar reaction results in the formation of advanced glycation endproducts (AGEs). AGE modification changes the structure of proteins to amyloid cross-beta structure. These protein structures can activate receptors known as RAGE on glial cells (microglia and astrocytes), and induce the expression of inducible nitric oxi...
متن کاملMetabolism of agmatine in macrophages: modulation by lipopolysaccharide and inhibitory cytokines.
Agmatine is an amine derived from the decarboxylation of arginine by arginine decarboxylase (ADC) and metabolized to putrescine by agmatinase. While prevalent in bacteria and plants, agmatine and its metabolic enzymes have been recently identified in mammalian tissues. In the present study we sought to determine: (a) whether macrophages (cell line RAW 264.7) express ADC and agmatinase, and (b) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Life sciences
دوره 91 25-26 شماره
صفحات -
تاریخ انتشار 2012